Integrating agroforestry intercropping systems in intensive agricultural landscapes:
a SWOT-AHP analysis of stakeholders’ perceptions

G. Laroche, N. Gélinas, M. Doyon & A. Olivier

Presented by:

Alain Olivier

Université Laval, Québec, Canada
Context

- Agroforestry intercropping systems
Context

- Agroforestry intercropping systems

- Intensive agricultural landscapes
 - Tree cover decline
 - Water and soil quality depletion
 - Biodiversity loss
 - Vulnerability to climate change impacts
Context

- Agroforestry intercropping systems
- Intensive agricultural landscapes
- Landscape trajectories (Ruiz and Domon 2009)

 Biophysical factors

 Social factors
Objectives

1) identify **local stakeholders’ perceptions** of the driving forces influencing agroforestry intercropping systems implementation;

2) assess the **potential of 3 agroforestry intercropping system designs** according to these driving forces;

3) **compare the answers** across various categories of stakeholders;
Study area

LES MASKOUTAINS
St. Lawrence lowlands (fertile soils)
86 148 h.

1 310 km²
96 % dedicated to agriculture
1 060 farms
Corn and cereals, hog, milk
Methodology

Focus group

Farmers - Farm advisors - Forestry advisors - Urban planners - Local authorities

SWOT Matrix
Hierarchisation of SWOT Factors
Rating of 3 AGF designs

Saaty 2010.
What are the STRENGTHS, WEAKNESSES, OPPORTUNITIES and THREATS influencing the integration of intercropping systems in your area?

<table>
<thead>
<tr>
<th>Strengths</th>
<th>Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>a.</td>
</tr>
<tr>
<td>b.</td>
<td>b.</td>
</tr>
<tr>
<td>c.</td>
<td>c.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Opportunities</th>
<th>Threats</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>a.</td>
</tr>
<tr>
<td>b.</td>
<td>b.</td>
</tr>
<tr>
<td>c.</td>
<td>c.</td>
</tr>
</tbody>
</table>
Methodology

Strengths
- a.
- b.
- c.

Weaknesses
- a.
- b.
- c.

Opportunities
- a.
- b.
- c.

Threats
- a.
- b.
- c.

PAIRWISE COMPARISONS

Strength A is more important
A and B are equal
Strength B is more important

Saaty 2010.
Methodology

« Crop »
alternative

Focus on CROPS
Cereals
Wide rows
Timber, nuts
On cultivated plots

« Tree »
alternative

Focus on TREES
Forage / pasture
Narrow rows
Timber
On abandoned plots

« Landscape »
alternative

Focus on LANDSCAPE
Cereals or pasture
Wide rows
Fruits, nuts
On strategic sites
to enhance aesthetics
Methodology

Which design is best to maximize strengths and opportunities / minimize weaknesses and threats?

RELATIVE PRIORITY SCORE

Saaty 2010.
Results
<table>
<thead>
<tr>
<th>SWOT FACTORS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Strengths</td>
<td></td>
</tr>
<tr>
<td>S_a: Good biophysical conditions</td>
<td></td>
</tr>
<tr>
<td>S_b: Availability of human and organizational resources</td>
<td></td>
</tr>
<tr>
<td>S_c: Local interest in landscape aesthetics and provision of ecological services</td>
<td></td>
</tr>
<tr>
<td>Weaknesses</td>
<td></td>
</tr>
<tr>
<td>W_a: Intensive agricultural systems and habits</td>
<td></td>
</tr>
<tr>
<td>W_b: Negative perceptions on the role of trees on farms</td>
<td></td>
</tr>
<tr>
<td>W_c: Lack of knowledge on agroforestry intercropping systems</td>
<td></td>
</tr>
<tr>
<td>Opportunities</td>
<td></td>
</tr>
<tr>
<td>O_a: Research network and expertise</td>
<td></td>
</tr>
<tr>
<td>O_b: Social acceptability of conservation practices</td>
<td></td>
</tr>
<tr>
<td>O_c: Pilot trials generating trustable results</td>
<td></td>
</tr>
<tr>
<td>Threats</td>
<td></td>
</tr>
<tr>
<td>T_a: Incompatibility with most agricultural support programs (short-term vs long-term)</td>
<td></td>
</tr>
<tr>
<td>T_b: Lobby pressure towards high productivity</td>
<td></td>
</tr>
<tr>
<td>T_c: Lack of knowledge on economic viability of agroforestry intercropping systems</td>
<td></td>
</tr>
</tbody>
</table>
SWOT FACTORS

Strengths

- **S_a**: Good biophysical conditions.
- **S_b**: Availability of human and organizational resources.
- **S_c**: Local interest in landscape aesthetics and provision of ecological services.

Weaknesses

- **W_a**: Intensive agricultural systems and habits.
- **W_b**: Negative perceptions on the role of trees on farms.
- **W_c**: Lack of knowledge on agroforestry intercropping systems.

Opportunities

- **O_a**: Research network and expertise.
- **O_b**: Social acceptability of conservation practices.
- **O_c**: Pilot trials generating trustable results.

Threats

- **T_a**: Incompatibility with most agricultural support programs (short-term vs long-term).
- **T_b**: Lobby pressure towards high productivity.
- **T_c**: Lack of knowledge on economic viability of agroforestry intercropping systems.
SWOT FACTORS

<table>
<thead>
<tr>
<th>Strengths</th>
<th>Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good biophysical conditions</td>
<td></td>
</tr>
</tbody>
</table>
- Intensive agricultural systems and habits.
- Negative perceptions on the role of trees on farms.
- Lack of knowledge on agroforestry intercropping systems. |
| Availability of human and organizational resources. |
- Local interest in landscape aesthetics and provision of ecological services. |
| Local interest in landscape aesthetics and provision of ecological services. |

<table>
<thead>
<tr>
<th>Opportunities</th>
<th>Threats</th>
</tr>
</thead>
</table>
| - Research network and expertise.
- Social acceptability of conservation practices.
- Pilot trials generating trustable results. |
- Incompatibility with most agricultural support programs (short-term vs long-term).
- Lobby pressure towards high productivity.
- Lack of knowledge on economic viability of agroforestry intercropping systems. |

<table>
<thead>
<tr>
<th>Farmers</th>
<th>Farm advisors</th>
<th>Forestry advisors</th>
<th>Urban planners</th>
<th>Local authorities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farmers</td>
<td>Farm advisors</td>
<td>Forestry advisors</td>
<td>Urban planners</td>
<td>Local authorities</td>
</tr>
</tbody>
</table>
Relative priority scores of the 3 intercropping alternatives

- **Crop alternative**
- **Tree alternative**
- **Landscape alternative**
Relative priority scores of the 3 alternatives according to stakeholders
Relative priority scores of the 3 alternatives according to stakeholders

Crop alternative Tree alternative Landscape alternative

All Stakeholders Farmers Farm Advisors Forestry Advisors Urban Planners Local authorities
Discussion

• Numerous social factors limit intercropping systems integration
 (Place et al. 2012, Ruiz and Domon 2009)

• Trees are not seen as a « profitable » element of the system
 • Trees = conservation practices
 • Timber crisis and cultural habits

• Collective rating hides profound disagreements
 • Choices based on different factors
 • Stakeholders divided on the best suited alternative
Conclusion

In Les Maskoutains intensive agricultural landscape...
Conclusion

In Les Maskoutains intensive agricultural landscape...

• Social context limits intercropping system integration;

• Stakeholders prefer intercropping systems aiming at crop production or landscape aesthetics with widely spaced tree rows;

• Further studies should compare intercropping systems to other land-use...
Thank you!

References

Ruiz J, Domon G. 2009. Analysis of landscape pattern change trajectories within areas of intensive agricultural use: a study in a watershed of southern Québec, Canada. Landscape ecology, 24: 419-432.

Picture credits

Google Maps, Bertrand Anel, Alain Cogliastro, David Rivest, Courrier Sud.